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Motivation

CUDA established for using general-purpose graphics-processing
units in HPC [1]

Increasing complexity of hybrid HPC programs requires
sophisticated performance-analysis tools

Problem: no current tool for automated analysis of execution
dependencies in MPI-CUDA programs

Scalasca: scalable MPI critical-path analysis
HPCToolkit: MPI-CUDA profiling, no intra-device dependencies
NVIDIA Visual Profiler: CUDA optimization guidance, no MPI
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Goals

Guide the developer to optimization targets in hybrid MPI-CUDA
programs

Scalable critical-path analysis based on trace files

Analyze host/device and device/device dependencies and
inefficiencies

Visualize analysis results in Vampir

Order activities by their potential optimization influence
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Preliminaries: Wait-State Analysis

Event Stream: stream of ordered events, e.g. MPI process, CUDA
stream

Wait State: time period at which an event stream is blocked [2],
result of inter-stream dependencies and load imbalances

Blame (HPCToolkit) or cost of idleness (Scalasca): attributed to the
cause of a wait state

Time

Process 1

Process 2 MPI_Recv MPI_Barrier

MPI_BarrierMPI_Send

MPI_Recv

Process 3 MPI_Send MPI_Barrier

A: Late receiver

B: Late sender

C: Load imbalance
at barrier

t
1

t
2

Examples for MPI Wait-States
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Preliminaries: Critical Path

Event Dependency Graph (EDG): directed acyclic graph

Nodes are the events of parallel event streams

Edges model the happens-before relationship and are weighted with
the duration between events [3]
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EDG for simple MPI example
(MPI_Init, MPI_Send/Recv, MPI_Finalize)
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Preliminaries: Critical Path (2)

Critical Path: [4]

Longest path in an EDG without wait states

Optimizing activities on this path can reduce execution time

Optimizing other activities can not (directly)
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CUDA Wait-State Analysis

Create a dependency/wait-state model for CUDA

Two activity kinds: host (API) and device (kernels, memcpys)

New categorization of CUDA Inefficiency Patterns:

Blocking Synchronization

Non-Blocking Synchronization

Late Synchronization

Inter-Stream Dependencies
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Rule-Based Pattern Detection
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BlameKernelRule
Identifies blocking synchronization that is delayed by device activities.
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Critical Sub-Paths

Combine MPI and CUDA critical path analysis

MPI critical path detected using Scalasca’s parallel reverse replay [5]

Global CUDA critical path is dominated by MPI critical path

! Determine critical sub-paths to efficiently and concurrently
compute CUDA critical paths using OpenMP

MPI_Send

MPI_Recv MPI_Barrier

MPI_Barrier

Kernel

launch cuStreamSync

Kernel

launch cuStreamSync

E
v
e
n

t 
S

tr
e
a
m

s

Kernel

cuStreamSync

Kernel

cuStreamSync

Critical Sub-Path

Critical Sub-Path

9/19



Visualization in Vampir

Vampir and VampirServer enable scalable visualization of hybrid
applications, including timelines, profiles, message and data transfers
and performance counters.
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Visualization in Vampir (2)
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(A) Counter Overlay: blocking memory copy (implicit synchronization)
(B) Counter Timeline: the synchronized kernel is attributed blame
(C) Counter Timeline: blocking synchronization is marked as waiting time
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Activity Optimization Order

Goal: Rank activity types by their potential influence

Create an optimization order for activity types, add

normalized fraction of total critical-path duration (direct runtime
impact)
normalized fraction of total blame (load-balancing impact)

! Highest-rated activities are best optimization candidates
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Correctness: Jacobi Method

MPI+CUDA application (two processes, one CUDA stream each).
Executes two kernels in each iteration.

10% work offloaded to GPU

90% work offloaded to GPU

Section of a trace in Vampir with two kernels:
jacobi_kernel and copy_kernel.
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Correctness: Jacobi Method (2)

Analysis result in Vampir’s performance radar (timeline overlay): CUDA
kernels become critical activities (red) for high GPU offloading ratio due

to blocking synchronization.
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Correctness: Jacobi Method (3)

Activity (all instances) Critical Path [%] Blame [%] Rating
jacobi_kernel 40.69 35.34 0.7603
cuMemcpyDtoH_v2 30.10 5.6 0.3570
MPI_Barrier ~0 35.62 0.3562
copy_kernel 5.04 9.59 0.1463
MPI_Allreduce ~0 12.78 0.1278
cuMemcpyHtoD_v2 10.15 0.0 0.1015

Activity optimization order for 90% work offloaded to the GPU.

15/19



Scalability: HPL CUDA
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Scalability of HPL CUDA version and analysis 1.
Combining MPI parallel replay and CUDA dependency analysis still

scales with the MPI operations of the input trace.

1
1 MPI process/node, NVIDIA K20X GPUs
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Conclusion

Contributions:

Comprehensive dependency model for CUDA activities

Scalable tool for critical-path analysis of MPI-CUDA traces

Identifies waiting time and the causing activities

Visualization of all metrics in Vampir

Generates a list of optimization targets, ordered by potential
influence
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Future Work

Extend support to applications including OpenMP, CUDA and MPI
(prototype available)

Evaluate usage of hardware performance counters during
optimization guidance
!Which activities are easier to optimize?

General CPU functions missing in this implementation (added in
prototype)

Thank you for your attention!
Questions?
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